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We derive expressions for the conjugate momenta and the Hamiltonian for 
classical dynamical systems subject to holonomic constraints. We give an algo- 
rithm for correcting deviations of the constraints arising in numerical solution 
of the equations of motion. We obtain an explicit expression for the momentum 
integral for constrained systems. 
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1. I N T R O D U C T I O N  

A general problem in classical mechanics can be formulated as follows. For  
a system of n particles at the points rl(t),... , rn(t) at time t, subject to M 
holonomic  constraints of  the form 

F1(rl(t) ..... rn(t)) = 0 

FM(rI(t),..., r , ( t ) )  = 0, 

(1.1) 

moving with velocities /'l(t),..., f , ( t )  under the influence of forces derivable 
f rom a potential  function U(rl( t  ) ..... r , ( t ) ) = 0 ,  find and solve the New- 
tonian differential equations for which the initial values of the position and 
velocity vectors are specified. This problem is sufficiently general to cover 
all problems which arise in classical statistical mechanics. 
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The textbook approach to advanced classical mechanics stresses the 
use of generalized coordinates. In this approach, due to Lagrange, K = 
3 n -  M variables q1(t),..., qK(t) are introduced, on the assumption that we 
can find n vector-valued functions Rl(ql(t)  ..... qx(t))  ..... Rn(ql(t),..., qx(t))  
of them for which the constraint equations (1.1) are identically satisfied, 
viz., 

fx(q~(t) ..... qK(t)) = F~(R~ ..... R~) = 0 

: ( 1 . 2 )  

fg(q,(t), . . . ,  qK(t)) = FM(R~,..., R~) = 0 

The result is analytical mechanics, a theory of great power and beauty 
which can be approached at many levels of mathematical sophistication. At 
its most basic level, the original Cartesian coordinates ri(t) and their time 
derivatives ~( t )  are eliminated from the Lagrangian function 

L = � 8 9  2 -  V(rl(t),... , rn(t)) (1.3) 

in favor of the K generalized coordinates q~(t) and K generalized velocities 
Oi(t). In this case, we have formally 

L = L(ql( t)  ..... qK(t), 01(t) ..... OK(t)) (1.4) 

The equations of motion in terms of these quantities can then be derived 
either from D'Alembert's or Hamilton's principle, yielding the well-known 
Euler-Lagrange equations 

d 
i = 1  ..... K (1.5) 

These are a set of K second-order differential equations whose solution can 
be regarded as providing, via the functions Ri(ql(t),..., qK(t)), a parametric 
representation for the trajectories rl(t),..., rn(t) moving on the surface of  a 
K-dimensional manifold in ~3n. 

An alternative, and in many ways more powerful, approach to analyti- 
cal mechanics is due to Hamilton. For each generalized coordinate q~(t), 
we define a conjugate momentum pi(t) by 

OL 
pi(t) = ~-~. (1.6) 

and a Hamiltonian function H(ql( t)  ..... qK(t), pl(t)  ..... px( t ) )  by 

H =  ~ p,(t)  Oi(t) - L (1.7) 
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The result is the differential equations of Hamilton 

8H 
Oi(t)  Opi 

(1.8) 
OH 

p , ( t )  - 
Oqt 

The 2K first-order differential equations (1.8) are equivalent to the K 
second-order Euler-Lagrange equations (1.5). 

In recent years, there has been a certain amount of interest in applying 
the method of molecular dynamics to systems containing complex 
molecules. (~-7) For such systems, the approach of analytical mechanics can- 
not be applied because of the impractibility of finding the generalized coor- 
dinates and the increasing complexity of the resulting equations. Moreover, 
some of the most popular parametrizations, Euler angles, for example, lead 
to singularities in the equations of motion which make their numerical 
solution impossible. This has led researchers in this field to make practical 
use of constraint dynamics. There are two theoretical approaches to this. 
The first is the realization that the forces of constraint must be normal to 
the surfaces of constraint, defined by Eqs. (1.1). When these forces of 
constraint are added, the Euler-Lagrange equations (1.5) become 

d5 Or i E #~ 0 r  i i = 1,..., n (1 .9 )  
c~=1 

The physical interpretation of the #~ here is as numbers proportional to the 
magnitude of the forces of constraint. 

Another approach is to graft the theory of isoperimetric problems (8'9) 
(constrained variational methods) onto Hamilton's principle, expressed as 
extremizing the action integral 

fL(rl(t),..., r,(t), fl(t),..., f,(t)) dt (1.1o) 

with respect to the trajectories subject to the constraints (t.1). This 
problem is attacked using the method of Lagrange multipliers. Following 
the theory, one replaces the function L in the Euler-Lagrange equations by 
the function L* defined by 

M 

L * = L +  ~ g'~F,~ (1.11) 
or 
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where the/~'= are Lagrange multipliers. The result is Eqs. (1.9) with the #= 
replaced by the multipliers #'=. The equivalence between the forces of 
constraint in the D'Alembertian formulation and the multipliers in the 
variational formulation appears to have been first noted by Lanczos. (8) 

These equations can only be useful if some practical way can be found 
to calculate the forces of constraint (or multipliers). A formal method of 
doing this by eliminating accelerations from the second time derivative of 
the constraints 

c~F~ cq2F~ . "~ 
dZF~-=~ i ri" q-2~i" - .rj 

d t  2 �9 ~ r  i j ~r iOrj ) =0, 
c~=l ..... M (1.12) 

is given in the next section. (1'2'4'1~ Taken with the Euler-Lagrange 
equations (1.9), Eqs. (1.12) enable us to find a set of nonsingular linear 
equations for the forces of constraint which can then be substituted back 
into the equations of motion. 

Unfortunately, these differential equations are unstable with respect 
to errors, so that the first attempts to implement constraint dynamics 
were within the context of the numerical algorithms used to integrate the 
equations of motion, particularly the algorithm SHAKE (1'2) and its 
descendants. (3) 

Edberg eta/. (4) published a numerical technique for finding the forces 
of constraint based on Eqs. (1.12), using penalty functions to discourage 
constraint violation, although a better method is given in Section 6 of this 
paper. 

However, a number of problems remain. One of these is the vexed 
question of what have come to be known as metric tensor corrections (3,m 
to the statistical mechanics of complex molecules. The reason for this state 
of affairs is that although the dynamics can be obtained within the 
framework of the Lagrangian theory, all fundamental proofs in statistical 
mechanics are derived within the Hamiltonian formalism. (12) For example, 
this formalism is necessary to make the connection between time averages 
of dynamical variables and their corresponding averages over the phase 
space consisting of the coordinates and their conjugate momenta. 

There is surprisingly very little in the literature on mechanics and 
statistical mechanics about this point. The point of view of most classical 
textbooks is that constraints are something to be got rid of as soon as 
possible, (8,1o,13,14) and in any case, before starting the Hamiltonian theory. 
An exception is the book by Sudarshan and Mukunda, (15) which refers to 
the theory of Dirac (~6'~7) (unfortunately without giving the references). 
These and a related work by Anderson and Bergmann (18) attack the struc- 
ture of constrained or nonstandard Lagrangians from the viewpoint of 
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gauge theories. They take the point of view that the Lagrangian equations 
are dependent and seek to construct conjugate momenta and a 
Hamiltonian. 

In Section 2, we begin by generalizing the problem stated above in 
terms of Cartesian coordinates by (possibly) eliminating some of the con- 
straints in favor of a set of constrained generalized coordinates. This 
generalization is important to cover situations which can occur in practice, 
especially for the study of models of large molecules with relatively few 
internal degrees of freedom. (7~ The Lagrangian equations are then derived 
within this framework. This generalization also leads to a more convenient 
notation. 

The next problem is how to define momenta pi(t) conjugate to the 
coordinate vectors ri(t) when there are constraints of the form (1.1) 
operating. In Section 3, we do this via an ansatz and derive a set of 
Hamilton-like equations based on a pseudo-Hamiltonian analogous to the 
constrained Lagrangian (1.4). 

In Section 4, we address the problem of proving the equivalence 
between these equations and the Lagrangian equations in the presence of 
the constraint forces. 

In Section 5, we address some of the consequences of these equations 
in respect to conservation laws. In particular, we use the formulation in 
terms of Poisson brackets to establish that not only the Hamiltonian, but 
also the equations of constraint are constants of the motion. This establishes 
that the constrained motion takes place on the (lower-dimensional) 
manifold determined by the equations of constraint. 

In Section 6, we give a brief summary of correction algorithms to 
facilitate numerical implementation of the results of this paper. This makes 
use of the fact that the true velocities can have no components normal to 
the surface of constraint. 

In Section 7 we address the problem of giving a meaning to as welt as 
a practical means of computation of phase space integrals of the form 

f dpl...dpn f drl...dr~ 

over the manifold defined by the equations of constraint. This gives a 
practical solution to the problem, arising especially in Monte Carlo 
simulations, of computing the appropriate measure for integrals over the 
constrained configuration space. 

2. L A G R A N G I A N  F O R M U L A T I O N  

The notation we developed in the introduction is in fact too restrictive. 
For  example, although we may use the positions of the six carbon atoms 
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in a benzene molecule, shown below, as dynamical variables, if the 
molecule is assumed rigid, we may with advantage use the principal axes 
vectors as dynamical variables ul(t) . . . . .  u3(t), as discussed elsewhere3 6'7) 

C 

C C 

I il 
C C 

\ / 
C 

To take account of this possibility, we consider a system described by 
N coordinates q~ ..... qN which are subject to M independent constraints of 
the form 

f=(ql . . . . .  qN) = 0, ~ = 1,..., M (2.1) 

Differentiating the constraint equations (2.1) with respect to time yields 

dT=~iqi-~qi=O, c~ = 1,..., M (2.2a) 

Differentiating once more, we find that the accelerations have to obey the 
equations 

dt 2 z_/. tq'~q~ +EO'OjJ ~qi OqJ =0,  c~=l ..... M (2.2b) 

The Lagrangian for the system can be written as 

L(qt ,..., qN, (t, , ' ,  ON) = �89 ~ m i q ~  --  U ( q l  ..... qN) 
i 

(2.3) 

where U is the potential energy. Because of the constraint equations (2.1) 
and (2.2), neither the coordinates qi nor the velocities Oi are independent 
variables. Here we have assumed the mass tensor to be diagonal, which is 
adequate for most purposes. An extension to a more general form for the 
mass tensor is straightforward. 

The classical method to integrate the equations of motion proceeds by 
eliminating the redundant variables from the Lagrangian using the con- 
straint equations. Such a procedure is only feasible when the constraint 
equations can be inverted. However, such an inversion is usually not 
possible. 
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Alternatively, one can use Lagrange multipliers. Traditionally, one 
then starts from a constrained Lagrangian L' defined,as 

L'  = L + ~ #~f~(qt, . . . ,  qN) (2.4) 

where the #~ are the Lagrange multipliers. The Lagrangian equations of 
motion now contain the multipliers #~, which are eliminated using 
Eq. (2.2b). 

For our purposes it turns out to be useful to incorporate the velocity 
constraints (2.2a) rather than the constraints themselves into the 
Lagrangian. Thus, we define the constrained Lagrangian L* as 

L* = L + ~ ~c~ ~ glj Oq ~ (2.5) 

The equations of motion are then derived in the usual manner from L* as 

O i = m ? l  ( F i _  ~ . 3 f~ \  =2.., ~c~< ~Tq fl (2.6) 

where F~ is the force F i = - ~ U / # q i .  It is straightforward to show that these 
equations are identical to the equations of motion derived from (2.4) if one 
identifies ~ = #,.  To obtain an equation for the ~ ,  we multiply (2.6) by 
3f~/~?qi and sum over all i. Using Eq. (2.2b), we find 

i j oq ioq j  . i ~ OqiOqi 
(2.7) 

From this point on, we are going to make extensive use of matrix notation. 
We will distinguish between matrices of size M and those of size N by 
denoting the former by symbols _X or _X and the latter by bold-faced 
symbols X. 

We now define a vector T with components 

�9 j oq~ o q j  
(2.8a) 

a matrix M with elements 

(M)~n = ~ rn~l ~fB 3f~ (2.8b) 
- i Oqi ~3qi 
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and vectors F and _K with components 

(F_)~=Zm, IF~ Oj~ 
i 6qq i  

( g ) =  = e= 

(2.8c) 

(2.8d) 

Equation (2.7) can be written as 

M _ K = F + T  (2.9) 

At this stage it is useful to consider some of the properties of the matrix M. 
It is obvious that M is symmetric. We now show that M is also positive 
definite. (10) 

Consider a set of numbers c=, ~ = 1 ..... M, not all equal to zero. Since 
the constraints f= are independent, the vectors (Sf=/aql ..... 8f~/OqN) =--f= are 
independent as well. Hence Y~= G f= r 0. Now consider the quadratic form 

E E G(M)=~ c,= E E G E mi-, 8f~ OJ} c e 
I 3 = o~ fl i 8qiSqi 

=~i mF1 G Sq,/ 

which completes the proof. It follows that M is nonsingular and its inverse 
M -  ~ is also a positive-definite symmetric matrix. 

We can now make contact with the Dirac theory ~ 17) by inserting the 
explicit form of the multipliers given by Eq. (2.9) and using Eq. (2.2b) to 
eliminate the velocities to obtain 

E (Q)0/lJ = ~ (Q)u Fj (2.10) 
J J 

where Q is an N x N square matrix with elements given by 

8f~, 8f~ _, (2.11) (Q),j=m:16o-m:l ~ ~ ~qi(M-l)~ ~qjmj - 

This matrix has rank N - - M ,  as we now show. Consider the M vectors f~ 
defined above with components 

( r ,  8fv (2.12) Iv )j = ~jqj 

Then 

8fv ~ q i -  J 'OfnOf" (2.!3) (Qfv),=m[*~q-m71 8f~(M 1)~a~mf-aqj~qj 
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which is zero by the definition of the matrix M. Thus the M vectors f= are 
eigenvectors of the matrix Q with eigenvalues 0. Note that although these 
eigenvectors are independent, they are not necessarily orthonormal. 
However, it is a straightforward matter to construct a set of M vectors v~ 
which form an orthonormal basis for the M-dimensional subspace of ~v  
spanned by the vectors f~, for example, using the Gram-Schmidt  method. 
Each of these is also an eigenvector of Q with eigenvector 0. Since Q is 
symmetric, its eigenvectors can always be chosen to form an orthonormal 
set. 

Thus, only N - M  of the accelerations in Eq. (2.10) are independent. 
These considerations have a simple geometric interpretation. The motion 
[as described by the velocities t)~(t)] takes place in an ( N - M ) - d i m e n -  
sional subspace of ~N orthogonal to the M-dimensional subspace spanned 
by the linearly independent vectors f~. We can regard the matrix Q as a 
representation of an operator which projects any vector v onto that 
orthogonal subspace. 

3. H A M I L T O N I A N  F O R M U L A T I O N  

In this section we construct a Hamiltonian corresponding to the 
constrained Lagrangian L* where all the coordinates q~ and generalized 
momenta p~ can be considered as independent variables. 

Let us start from the Lagrangian 

L * =-~ ~ rn,O~- U(ql,..., qx) + ~ 7~ ~ (Tj ~qj (3.1) 

For clarity we have renamed the Lagrange multipliers Y~, since at this stage 
it remains to be shown that they are identical to ~c=. We define momenta 
pi in an obvious manner 

OL* ~f~ (3.2) 
P~= O0---T = miO~ + Z 7~ Oq, 

ct 

Inverting (3.2), we get for the velocity qi 

g l i=rn71(P i -~  ?~f~']c~qJ (3.3) 

In terms of the generalized momenta Pi the velocity constraints become 

Zl i -~o + = )_2 m ?- P i ~a - ~ m ~ ~ 7 ~ O q ~ O q , 
0 = v  0 L  - 1 af= L of of= 

�9 q i  i q i  " B 

(3.4) 
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or in matrix notation 

_P = Mr" (3.5) 

where we have defined a vector _P with components 

(_P)~ = ~  mi pi~q i (3.6a) 

and a vector F with components 

(_F)~ = 7~ (3.6b) 

Note that when _F is obtained from Eq. (3.5) for a given set of p~ the 
velocity constraints are satisfied identically. 

We now construct a Hamiltonian H as 

m . 2  H= ~ O,p,-  L = ~ O,P,-  �89 ~ ,q, + U(q~ ..... qu) (3.7) 
i i i 

Because for any given set of p~ the velocity constraints are automatically 
satisfied, we use L rather than L*. Eliminating the velocities in favor of the 
momenta, we get 

H = � 8 9  1 2 1 T m~ p~-~F_ MF_ + U(ql ..... qu) (3.8) 
i 

Thus, we can obtain a Hamiltonian which is a function only of momenta 
and coordinates by eliminating _F using Eq. (3.5), 

H(ql ..... qu, Pl ..... PN) = �89 m;-lP 2 _1 T 5- P M I P + U ( q l  . . . . .  qN) (3.9) 
i 

We can now regard the Hamiltonian as a function of N independent 
coordinates qi and N independent momenta pi and derive the Hamiltonian 
equations of motion in the usual manner, i.e., 

0H ~H 0i=ap ; pi=-  (3.10) 

For the sake of completeness, we write these equations out in full: we find 

i l i = m 7 1 ( P i - ~ 7 ~  c~f~']c3qi J (3.10a) 
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and 

OU 82f~ . 
/ $ , -  8q, F - 2 2 7 ~ q  j (3.10b) 

c~ j 

We may view Eq. (3.10) in a different light by inserting in it the explicit 
forms for the multipliers given by Eqs. (3.5)-(3.6) to obtain 

0, = 2 (Q)~ PJ 
J 

showing that the velocities have no components perpendicular to the 
constraint surface. 

In Section 5 we shall show that the constraint functions f~(ql,..., qN) 
are conserved quantities for the Hamiltonian H given in (3.9). Further- 
more, as shown in the next section, the Hamiltonian equations of motion 
are entirely equivalent to the Lagrangian equations (2.5). The main advan- 
tage of using the Hamiltonian equations of motion is that if one starts with 
a set of coordinates which satisfy the constraints (2.1) at time t=0 ,  the 
motion of the system will automatically remain on the surface defined by 
the constraint equations (2.1) for all time. In other words, the solutions of 
Eq. (3.10) automatically satisfy the constraint equations if they satisfy 
Eq. (2.1) at some initial time to. 

4. EQUIVALENCE OF THE H A M I L T O N I A N  A N D  
L A G R A N G I A N  EQUATIONS OF M O T I O N  

To show the equivalence of the Hamiltonian and Lagrangian equa- 
tions of motion, we first expand the Hamiltonian (3.9): 

H=�89  ) (4.1) 

Differentiating H with respect to Pi gives 

i 0L 
1 1 8 f ~ , ( M  1)~p~=m71pi_m [- ~7~c3q i Ch = m7 Pi--  mi 63qi ? = ~< (4.2) 

which is the same as Eq. (3.3), as should be expected. 
We now derive equations for 0i from the Hamiltonian equations of 

motion. Differentiating Eq. (4.2) with respect to time yields 

1(  . S f ~  ~ / ~  632f~ ) (4.3a) 

1I . Sf~ J ( p j _ ~  af~'~ 82f~ ] 



1214 de Leeuw e t a l .  

By substituting/5~ from the Hamiltons equations (3.10), viz. 

0H 1 0 p T  -1  
[) i - -  ~ q i - -  F , -t- "~ -~q s ( M= P) (4.4) 

we want to obtain equations for ~, which have the same form as the 
Lagrangian equations of motion (2.5). This substitution gives 

/ i i = m T ' [ F - ~  �9 0f~'  1 c~ ~ ~ * ~  (-P ~- '-P) 

( os,) ] 
s J \ n OqJ Oq~c3qs j 

(4.5) 

This equation has the same form as (2.5) if the last two terms in (4.5) 
cancel. This is indeed the case, since 

< < 
~ OqJ #qi Oql 

, o( 
2 ~ 2 7 ~ T n ~ T q  i 2 m 7  laf=ofe'] 

e . J #qj aqj} 
=rr•_P 1 r a _  M 1 C q 

Thus, Eq. (4.5) becomes 

(4.6) 

which is the desired result. 
Hence, Eq. (4.6) is equivalent to the Lagrangian equation of motion 

if we can identify the coefficients ~ obtained from Eq. (2.8) with the 
coefficients ~=. Differentiating Eq. (3.5) gives 

_P = M_[" = - __I~I_F + _1) (4.7) 

so that the equivalence of the two equations is shown if 

- __I_I~_F + P = F + T (4.8) 
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To establish this, consider the vector T_ defined in Eq. (2.8a), viz. 

~ . 82f~ d Iv , .  8f/~ .. 8f~ 

Substituting Eq. (3.3) for qi, we get 

d (~ 10fc~ d (~  8f~Sf~ ) 8J'~ 

d O f~+ E m ; l ~  c3qieq i = (_p)= - ~ (Mr)o - E m,-1F, v ~L af ,  
- i q ,  , 

where we have substituted Eq. (4.6) for the accelerations 0,- Then 

d (g)~ = (P)~ - (_V)~ - ~  ( __M_F)~ + (MPL = (_0)~ - {_V)~ - (~F)~ 

Hence - 1VIF + P = F + T. Thus the ~ are the same as the ~ ,  which com- 
pletes the-proof of the equivalence of the Lagrangian and Hamiltonian 
equations of motion. 

5. C O N S E R V A T I O N  L A W S  

Having established the equivalence of the Lagrangian and 
Hamiltonian formulations, we now show that the energy and (under 
certain assumptions) the total generalized momentum are conserved. 

It is obvious that the Hamiltonian can be identified with the total 
energy E of the system. Energy conservation then follows because 

dH ( O H  8H, (SHSH 8HSH) 
d t = ~  ~163 Oqi~P/ : 0  (5.1) 

To ensure that the total generalized momentum is conserved, we must 
assume that the constraints are functions only of coordinate differences, i.e., 

f~(ql ..... qN)=f~(q~--q2, q~--q3,...,q,--qj,...,qN ~--qu) (5.2) 

Then 

af~ ~ q = 0  (5.3) 

W e  further assume that there is no external force field, i.e., that 

r~ = 0 (5.4) 
i 
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Almost all cases of interest where the total momentum should be conserved 
satisfy Eqs. (5.2)-(5.4). 

Differentiating Eq. (3.2) and summing over all i gives 

= 2 Fi + 2 Y~'-dt t ~qi) : 0  
i 

Thus, under the assumptions (5.2)-(5.4) the total generalized momentum is 
a constant of the motion. 

Finally, we prove that the functions f~ are constants of the motion 
prescribed by the Hamiltonian H. We define the Poisson bracket [A, B] of 
two dynamical variables A(p, q) and B(p, q) in the usual way as 

(SA OB ~?A ~B) 

It is immediately clear that a dynamical variable is a constant of the 
motion for H if 

[H, A] = 0  (5.6) 

The Poisson bracket [H, f~] is 

[/-/, L1 = 2 = - - L  qi ~ ~--" 0 (5.7) 
i \Oqi Opi 3p, 8 q J  , q, 

Thus, the functions f~, ~ = 1 ..... M, appearing in the equations of constraint 
are constants of the motion for the Hamiltonian H. 

6. C O R R E C T I O N  OF N U M E R I C A L L Y  
G E N E R A T E D  T R A J E C T O R I E S  

These results are contained elsewhere, but are summarized here to 
enable the reader to implement the results of this paper numerically. Sup- 
pose we are solving the system of differential equations (3.10) numerically 
using a high-order DE solver algorithm. Then, although the constraint 
functions (2.1) are constants of the motion, the trajectories may be unstable 
with respect to small deviations from the constraint manifold. This is a 
widespread problem in constraint dynamics, and we do not expect it to 
disappear here. More precisely, suppose that a particular time step of the 
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solution generates a vector q~ in the N-dimensional phase space, such 
that f~(q~ 0. If the constraints were satisfied at the previous integra- 
tion step, then 

f~(qO) ~ O(h k) (6.1) 

where h is the integration time step and k the order of the DE solver. Any 
correction to qO can be written as 

q = q O + ( ~  0f~(q) ) " e  r  + w i  h k (6.2) 

where the vector w• is in the orthogonal subspace to the M-dimensional 
subspace spanned by the gradients of the constraint equations. For our 
purposes, it suffices to find the coefficients %. We insert Eq. (6.2) into the 
constraint equations and apply Taylor's theorem to obtain 

Olf~(q) 

= f~(qO) + h k ~ e~ aft(q~ �9 af/~(q) + hkw. 
c~q c~q 

�9 Of~(qO) 

~q 
- - +  O(h  2k) (6.3)  

We note that the right-hand side of Eq. (6.3) still contains the vector q. 
A further application of Taylor's theorem gives 

Of~(q) Of~(q~176 - -  "w (6.4)  
0q ~q 0q 0q 

where 

w = ( ~ e n  ~?f~(q)~q +w• 

Inserting Eq. (6.4) into Eq. (6.3) yields the result 

af=(q~ af/3(q~ + O(h 2k) (6.5) L(q) = f~(qO) + h~ Z e, 
, Oq Oq 

Because of Eq. (6.1), the quadratic correction term in the last member of 
Eq. (6.3) is negligible. Then Eq. (6.5) leads to the nonsingular set of M 
linear equations 

~ [  Di~<(q~ " ~fn(q~176 ~1 (6.6) 

822/61/5-6-17 
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for the M correction parameters h%~.  No corrections are required for the 
velocity constraints, as these are automatically satisfied by construction of 
the Pi. 

We have performed numerical tests of this correction algorithm by 
simulating rigid models of the molecules CC14 (tetrachloromethane) and 
PC13 (phosphorus trichloride) within the framework of the Lagrangian 
formalism. The equations of motion were solved using a fifth-order predic- 
tor-corrector algorithm. For these models, the bond length and bond 
angle constraints are all quadratic functions of relative atomic coordinates 
ri and rj of the form 

(r~- rj)2 = d~ 

The correction algorithm was applied whenever 

( r i -  r j )2 /d  2 - 1 

exceeded 10 -5 . With this tolerance, each molecule was corrected about 
every 20th integration step. Because of its nature, the correction algorithm 
does not affect motion on the constraint surface, and hence cannot do any 
violence to the dynamics. We believe that this algorithm represents the 
optimal solution to computational problems which have occurred in con- 
straint dynamics. 

7. P H A S E  S P A C E  I N T E G R A L S  

The nature of the problem and a clue to its solution are best intro- 
duced by a simple example, which will also serve to illustrate many of the 
concepts in the preceding sections. The simplest case of a dynamic system 
for which these considerations should hold is the case of the rotation of an 
axially symmetrical body about its center of mass. Let u(t) denote the unit 
vector specifying the orientation of the rotation axis. Then the only 
constraint is 

u(t)2 = 1 (7.1) 

and its differentiated form is 

u ( t ) . / , ( 0  = o (7.2) 

The considerations above suggest that the constrained Lagrangian is 

L* = �89 2 + ~,(t) u(t)-/l(t) + g(u(t)) (7.3.) 
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where 2 is the (nonzero) eigenvalue of the inertia matrix. The momentum 
p(t) conjugate to u(t) is then 

p(t) = 21i(t) + y(t) u(t) (7.4) 

Taking the scalar product of this with the vector u(t) and using the 
constraint and its time-differentiated form, we find that 

y(t) = p(t)" u(t) (7.5) 

so that 

li(t) = 2 - 1 { p ( t ) -  [p(t)" u(t)] u(t)} (7.6) 

The Hamiltonian is then 

H =  �89 [p(t) .  u(t)] u(t)} ~ + U(u(t)) (7.7) 

= 12 l{p( t )2-  [p(t) .  u(t)] 2} + U(u(t)) (7.7a) 

Note that this quantity is always nonnegative. We may now write down 
Hamilton's equations: the first is 

0(t) = 2 - 1 { p ( t ) -  [p(t)" u(t)] u(t)} (7.8) 

and the second is 

~U 
p(t) = 2  ll-p(t), u(t)] p ( t ) -  ~3-u (7.9) 

These equations are equivalent to the corresponding constrained 
Lagrangian equations. 

To illustrate the problems which arise in discussing statistical mechanics 
and, in particular, integrals over the momentum space, let us rewrite 
Eq. (7.7a) in the form 

H =  �89 lp(t)T (I -- u(t) U(t) T) p(t) + U(u(t)) (7.10) 

The matrix Q, given by 

Q = I -  u(t) u(t) r (7.11) 

has rank 2, since it has an eigenvector u(t) with eigenvalue 0. Any attempt 
to compute the momentum integral 

f dp 1~ 1 (t~T exp{ --~p~ p ) [l--u(t)  U(t)T]p(t)} (7.12) 
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where fi = ( k  B T)-~ in the canonical ensemble as an unrestricted integral 
over the three components of p will lead to a divergent result. 

If v and w are any two orthonormal vectors spanning the subspace 
orthogonal to u, then the unitary matrix U with columns consisting of 
(u, v, w) diagonalizes the matrix Q. If we denote by p' the vector Up, then 
we may rewrite Eq. (7.10) as 

H :  �89 lp'(t) r (diag(O, 1, 1)) p'(t) + U(u(t)) (7.13) 

In this representation the 1-component of the momentum is absent. As the 
integral in (7.12) is invariant under a unitary transformation, its correct 
value is given by the double integral 

ffdp'2dp'3exp{-lfl2 lp'(t)r [diag(0, 1, 1)] p'(t)} (7.14) 

leading to the well-known result for the momentum integral of the sym- 
metric rotator. 

Let us proceed to the general case and consider only the kinetic part 
T of the Hamiltonian. 

T= �89 Z milp~- �89 E Z P~(M-1)~ P, 

which, on inserting the explicit forms for the P~, becomes 

r=~Zp ,m;  6o.pj--~2Zp~m: ~ (M_ ')~O~f~mf*pj (7.15) 
, j , j ~ O q i  - oqj 

If we denote by p a vector in the momentum space whose N components 
are the momenta, then T may be written as 

T= �89 (7.16) 

where Q is the N x  N square matrix with (0") element defined in Eq. (2.11 ), 
given by 

~f~ (M_l)=a c~f~ _ (7.17) (Q)ij:m:l~o--m;l ~ ~ ~q i _ -~qjmj 1 

The rank of this matrix has been shown to be N -  M in Section 2, so that 
a result analogous to that obtained for the rigid rotator holds. 

Let us now show that the matrix Q is nonnegative definite. Using 
Eq. (3.10a), we have 

~i mZip2i:~i mZl(miOi-~-~,o:~@i)2 (7.18) 
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so tha t  

1 Z m ~ l p 2 1  Of~Of~, 1 
2 i 5 2 2 7 ~ 2 m : ~  ' /~=52m~0~  ~ i Oqi Oqi i 

(7.19) 

which proves  the nonnega t iv i ty  of the kinetic  energy. 
To establ ish the general  result  ana logous  to Eq. (7.13), we need to find 

the N -  M posi t ive eigenvalues 2M + 1 ..... )~N of  the mat r ix  Q and  the corre- 
spond ing  ( o r t h o n o r m a l )  e igenvectors  VM+~ ..... VN- Because of the symmet ry  
of Q, each of these is o r thogona l  to the vectors  vl ..... VM. Thus,  the N x  N 
mat r ix  V whose co lumns  are the vectors  v~ is a un i ta ry  mat r ix  which 
d iagonal izes  the mat r ix  Q. Thus,  we have 

T =  �89 r d iag(0  ..... 0, 2M+ ~,..., 2N)(Vp) (7.20) 

If we define p '  = Vp, then the m o m e n t u m  integral  for this H a m i l t o n i a n  is 

f . . .  f dptM+l "'" dptN exp{ -- �89 r d iag(0  ..... 0, 2M+1 ..... 2N) p ' ( t )  } 

The  Gauss i an  integrals  can now be per formed to yield 

(2rckB T) ( N- M)/2 

( A M +  1 " ' "  "~N) 1/2 
(7.21) 

for the m o m e n t u m  integral .  This result  is equivalent  to that  given else- 
where, (3'5'11) save tha t  it is subject  to direct  calculat ion.  The main  advan-  
tage over  previous  t rea tments  is that  a set of general ized coord ina tes  
descr ib ing the m o t i o n  of the system is not  required.  
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